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Abstract—We present a novel algorithm for radar imaging of 
point scatterers using a sparse number of spatially separated 
sensors. Such sparse sensing scenarios are prototypical of many 
applications wherein a limited number of sensors are distributed 
over a geographical area; or where environmental and/or 
systemic constraints enforce a sparse sampling of angular 
aperture. Our underlying assumption is that the image is sparse 
with respect to the Gabor basis set. We then introduce the 
concept of an orbit—viz. the locus of all projections made by a 
spatial basis—and formulate the radar imaging problem as that 
of sparsifying the number of orbits that comprise the radon 
measurements of the source. We demonstrate how our 
algorithm outperforms FFT-based and Compressive-sensing 
based reconstruction algorithms for point-scatterer images, 
describe relevant theoretical performance bounds of our 
algorithm, and point to future research arising from this work. 
 

I. INTRODUCTION 
The quality of image formation performed by radar 

imaging systems fundamentally depends upon its ability to 
form a ‘sufficiently wide enough’ aperture to capture the 
underlying information of interest contained in the scene [1]. 
In traditional Fourier imaging systems, the sensor outputs 
from several different aspect angles are combined via back-
projection methods [1-3]—which in turn depend upon the 
Fourier slice theorem [4]—to form an image of the scene. The 
disadvantage of such an approach is that spatially localized 
sources of energy (such as due to point scatterers) tend to be 
correlated with a dense number of slices of the Fourier plane 
and consequently reconstruction from a sparse number of 
sensors will cause serious degradation in the quality of the 
image. 

This therefore raises a natural question as to whether it 
possible to reduce the number of required sensors by imaging 
with respect to non-Fourier bases in which the image admits a 
sparse representation. In this paper we formulate this problem 
as that of sparsifying the number of orbits that are induced by 
the various spatial atoms that comprise the image with respect 
to various aspect angles. We define an orbit as the locus of all 
projections of a given atom with respect to the various aspect 
angles. The problem of image reconstruction therefore is 
equivalent to finding the sparest number of orbits that 
accounts for the radon measurements together with an 
estimation of the parameters of the spatial atoms that comprise 
an image. 

In this paper we employ the Gabor dictionary to model 
image structure. One reason for this choice is that, as shown in 
Section 2, the Radon transform of Gabor atoms yields time-
domain Gabor atoms from whose measured properties the 
parameters of the corresponding spatial Gabors can be 
inferred. Furthermore, Gabors offer flexible structures to 
model a range of behaviors from sinusoids to impulses which 
therefore make it amenable to modeling complex image 
structures. Thereafter we introduce our basic greedy sparse 
angular aperture (GSAAR) algorithm for sparse aperture radar 
imaging, describe some of its properties, and demonstrate 
quantitative performance bounds of a variant of the GSAAR 
algorithm. 

We numerically evaluate the performance of our algorithm 
in Section 3 by comparison to traditional back-scattering and 
compressive sensing based approaches for a varying number 
of scatterers and varying noise-levels. We find that our 
algorithm consistently outperforms these approaches for even 
moderate noise levels and any number of scatterers. We 
conclude in Section 4 with a discussion of future work and 
extensions to handle more complicated scene structures. 

 

II. SPARSE ANGULAR APERTURE RADAR 
A. Preliminaries 

In this paper we model the radar scattering process by the 
Fourier slice theorem wherein the radar returns from a given 
aspect is modeled by a slice of the 2-D Fourier transform of 
the image along the corresponding aspect angle [4]. Given 
this, the exact image reconstruction is given by the inverse 
radon transform—which is usually approximated by various 
back-projection algorithms [2]. However under the constraints 
of sparse-sensing wherein a sparse number of sensors gather 
projective information, serious degradation of reconstructed 
image quality can result due to the fact that the image 
structures that comprise the image, such as point scatterers, 
typically exhibit strong correlation with respect to a dense 
number of slices of the Fourier plane. 

Therefore, in this paper, we examine an alternative 
strategy of imaging in non-Fourier bases with respect to which 
the source image I admits a sparse representation with respect 
to the sparse basis set ሼ߮௜ሽ௜ୀଵ஽ :  

ܫ                         ൌ  ∑ ܿ௜߮௜ሺݔሻ஽௜ୀଵ                        (1) 
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Given this, the projective signal received at an aspect angle ߠ௞ 
is:      ݎ௞ ؠ ܴ௞ܫ ൌ ࣬ఏೖሼܫሽ ൌ  ∑ ܿ௜ ࣬ఏೖሼ߮௜ሺݔሻሽ஽௜ୀଵ                 (2) 
where, ࣬ఏೖ is the Radon transform taken at aspect angle ߠ௞. 
Thus given the data ሼݎ௞ሺݔሻሽ௞, the problem therefore becomes 
one of inferring the coefficients ሼc୧ሽ. 

To make our approach concrete, in this paper we employ a 
Gabor dictionary Φ ൌ ሼ߮௜ሽ௜ to represent the spatial image. 
The family of Gabor functions consist of a single prototype 
function g(x) that is modulated by complex exponential: ߮௜ሺݔሻ ൌ  ݃ሺݔሻexp ሺ݆߱௜ݔሻ, where for example g(x) is a 
Gaussian function ݃ሺݔሻ ൌ ଵඥଶగఙ೔ ݌ݔ݁ ൬െ ௫మଶఙ೔మ൰. A Gabor 
dictionary is formed by choosing the placement of scale and 
frequencies, ሼሺߪ௜, ߱௜ሻሽ௜, of the atoms that constitute the 
dictionary such that they form a overcomplete basis. In this 
paper we consider overcomplete Gabor dictionaries with 
Gaussian prototype windows. 

Given a spatial Gabor atom of the form [5-6]: ߮௜ሺݔሻ ൌ ଵඥగఙ೘ఉ೘ ݌ݔ݁ ቀെ ቂሺ௫ି௫೘ሻమଶఙ೘మ ൅ ሺ௬ି௬೘ሻమଶఉ೘మ ቃቁ exp ሺ݆ሼߦ௡ሺݔ െݔ௠ሻ ൅ ߭௡ሺݕ െ  ௠ሻሽሻ             (1)ݕ

it can be verified that the Radon projection of (1) is given by: 

                   ߰௞,௜ሺݔሻ ൌ  ࣬ఏೖሼ߮௜ሺݔሻሽ           (2) 

such that: ࣠ሼ߮௜ሺݔሻሽ|ሺక೙ୀఠ௖௢௦ఏೖ,జ೙ୀఠ௦௜௡ఏೖሻ ൌ ࣛ ଵටଶగ௔೘మ exp ቀെ ଵଶ௔೘మ ሺ߱ െ߱௠ሻଶቁ expሺെjሺx୩cosθ୩ ൅ y୩sinθ୩ሻωሻ           (3) 

where,  ܽ௠ ൌ ඥߪ௠ଶ ௞ߠଶݏ݋ܿ ൅ ௠ଶߚ  ௞                        (4)ߠଶ݊݅ݏ

 ߱௠ ൌ ቀక೙ఙ೘మ ௖௢௦ఏೖାఔ೙ఉ೘మ ௦௜௡ఏೖ௔೘ ቁଶ
                                (5) 

 ࣛ ൌ  ඥ2ܽߨ௠ଶ ݌ݔ݁ ቀെ ଵଶ ሺܥ െ ݀ሻቁ                      (6) 

ܥ  ൌ ௠ଶߪ௡ଶߦ ൅ ߭௡ଶߚ௠ଶ                                              (7) 

 ݀ ൌ ሺሺߦ௡ߪ௠ଶ ௞ߠݏ݋ܿ ൅ ௠ଶߚ௡ߥ ௞ሻߠ݊݅ݏ ܽ௠⁄ ሻଶ              (8) 

Thus ߰௞,௜ is a Gabor function centered at ߱௠ with scale ܽ௠ 
and amplitude ࣛ. Therefore spatial Gabor atoms project to 
time-domain Gabor atoms under the Radon transforms. Let us 
denote the dictionary of time-domain Gabor atoms (that are 
used to represent the Radon projections) by Φ୲ ൌ ሼ߶௝ሽ௝. In the 
next section we will see how the structure of projections with 
respect to Φ୲ can exploited to estimate the parameters of the 
spatial Gabor from those of its angular projections. 

The above properties together with the fact that Gabors 
offer a very flexible structure for modeling a range of 
behaviors from impulses to sinusoids, make Gabor 
dictionaries good candidates for our applications. 

 

B. The GSAAR Algorithm 
Consider a source of N point scatterers with positive 

reflectivities distributed in space and where this source is 

sensed by M sensors equally spaced in a circular geometry. In 
this paper M sensors are assumed to be monostatic and non-
interacting. This setup is a prototypical of many scenarios 
wherein only a limited number of looks are available for a 
given object in space. Given these sensed measurements, the 
goal is to reconstruct the image as accurately as possible. The 
straightforward way to reconstruct this image is to compute 
the inverse radon transform given the various sensed 
measurements. In this paper we introduce an alternative 
algorithm for accomplishing the same objective which we now 
describe in more detail. 

Firstly it is clear that a spatial atom in space projects to 
various sensing angles when measured by the corresponding 
sensors. Given this we define an orbit of a spatial atom to be 
the locus of all projections that the atom makes with respect to 
the various sensing angles. Therefore if an image is sparse in a 
given dictionary, correspondingly a sparse number of orbits 
fully account for the M radon measurements made with 
respect to the various sensing angles. The following algorithm 
infers the orbits that are induced by the spatial atoms that 
comprise the image: 

Greedy Sparse Angular Aperture Radar (GSAAR) Algorithm: 

0) k ← 1 
1) Compute the optimum pair: ሺm୩, ψ୩ሻ ൌ  argmin௠,ట | ൏ ,௠ݎ ߰ ൐ | 

            Let ሺx୩଴, y୩଴ሻ be the spatial location where atom ߰௞ is  
            centered 

2) Compute the set  
           Sk = {(x,y): a Gabor atom centered at (x,y) projects to 
                               ሺx୩଴, y୩଴ሻ } 
            Let Ok ≡ Set of all orbits corresponding to Sk, where  

        the jth orbit corresponds to location ൫x୩୨ , y୩୨ ൯ and atoms  
        ൛߶௠,௞,௝ൟ௠ such that: 

        ߶௠,௞,௝ ൌ argmin௠,ట ฬ൏ ,௠ݎ ߶࣪೘ቀ୶ౡౠ ,୷ౡౠ ቁכ ൐ฬ  
        where: 
        a) ߶࣪೔ሺ௫ೕ,௬ೕሻ כ א  Φ୲ 

            b) ௠࣪ሺx୩୨ , y୩୨ ሻ ≡ projection of ሺx୩୨ , y୩୨ ሻ onto the mth  
  sensing angle 

            c) ߶࣪೘ሺ୶ౡౠ ,୷ౡౠ ሻ כ is the atom that has maximum  

                correlation with ݎ௠among all atoms centered at            
               ሺx୩୨ , y୩୨ ሻ 

3) Compute the optimum orbit k corresponding  
        atoms ሼ߶௠௞ ሽ to such that: ሼ߶௠௞ ሽ ൌ argmax௝ | ൏ ሼݎ௠ሽ, ൛߶௠,௞,௝ൟሽ ൐ | 

           where,|൏ ሼݎ௠ሽ, ൛߶௠,௞,௝ൟ ൐ | ൌ  ∑ | ൏ ,௜ݎ ߶௠,௞,௝ ൐ |ெ௜ୀଵ  
 

4) Estimate the parameters of the spatial atom ߮௞  
        corresponding to orbit k from the parameters of  
         ሼ߶௠௞ ሽ 
5) Subtract the contribution of orbit k from ሼݎ௠ሽ 
6) k ← k+1 
7) Repeat steps (1-6) until termination criterion is met 
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The GSAAR algorithm furnishes the spatial bases ሼφ୩ሽ୩ that 
comprise the source image. Steps 1-3 of the above algorithm 
involve identifying the spatial location ሺx୩, y୩ሻ of the basis φ୩ that accounts for the maximum energy in the M residual 
radon measurements. Correspondingly the location of the 
projections ሼ ௠࣪ሺݔ௞,  ௠ can beߠ ௞ሻሽ௠ for each sensing angleݕ
determined in a straightforward manner. Let us denote the 
corresponding optimum atoms centered at ሼ ௠࣪ሺݔ௞,  ௞ሻሽ௠ݕ
(corresponding respectively to ሼݎ௠ሽ௠ ሻ by ሼ߶௠௞ ሽ௠ (such that ߶௠௞ ߳Φ௧). Then let ܽ௠,௞ and ߱௠,௞ denote, respectively, the 
measured scale and center frequency of the Gabor atom ߶௠௞ . 
First consider measurements of φ୩ made at two sensing angles ሺߠ௠,  ௡ሻ. Then using equation (4) we obtain the followingߠ
equation: 

                ൤cosଶߠ௠ sinଶߠ௠cosଶߠ௡ sinଶߠ௡ ൨ ቈσ୩ଶβ୩ଶ቉ ൌ  ቈa୫,୩ଶa୬,୩ଶ ቉         (9) 

which can be easily solved for ሺߪ௞,  ௞ሻ. In order to ensure thatߚ
the matrix in equation (9) is well-conditioned, the angle ߠ௝ 
can be chosen such that หߠ௜ െ ௝หߠ ൎ π/2. Now given the 
measured center frequencies ߱௠,௞ and ߱௡,௞, the solution of 
(9) and equation (5), the center frequency of the spatial Gabor 
atom can be estimated by solving the following equation: 

                   ൤ߪ௠ଶ ௠ߠݏ݋ܿ ௠ଶߚ ௡ߠݏ݋௡ଶܿߪ௠ߠ݊݅ݏ ௡ߠ݊݅ݏ௡ଶߚ ൨ ൤ξ୩ν୩൨ ൌ  ቂc୫,୩c୬,୩ ቃ            (10) 

where, c୫,୩ ൌ ܽ௠,௞ඥ߱௠,௞ and c୬,୩ ൌ ܽ௡,௞ඥ߱௡,௞        (11) 
Finally the amplitude of the spatial Gabor can be estimated 
by compensating the amplitude term in (6). 
 Having estimated the parameters of the spatial atoms 
above, we then subtract the contributions of this atom from 
the M radon measurements in step (6) of GSAAR. The 
residual radon measurements are then iteratively analyzed in 
the same fashion until convergence. Note that convergence to 
a local minimum is guaranteed since energy of the M radon 
measurements strictly decreases on every iteration. In the 
simulations below, since the number of point scatterers is 
known a priori, termination criterion is naturally the number 
of spatial atoms estimated. Alternatively one can terminate 
the algorithm once the residual energy falls below a pre-
determined threshold. 
 The next section describes quantitative bounds on the 
performance of the GSAAR algorithm that gives important 
insights into some of its theoretical properties. 
 
C. Performance Bounds of the GSAAR Algorithm 
A canonical greedy algorithm for approximating the optimum 
representation of a signal is the OMP (orthogonal matching 
pursuit) [8]. In this context we demonstrate that the special 
structure in the greedy approach to sparse angular aperture 
radar imaging can be easily reduced to a form for which 
explicit performance bounds have been derived in the 
literature. The following lemma demonstrates such a 
reduction. 
Lemma 1: Assume that the source image I can be exactly 
represented with respect to all the columns of matrix Φ୭୮୲; 
and let matrix Ψ୭୮୲ contain the remaining atoms in Φ (and 

mutually exclusive from Φ୭୮୲). Then a sufficient condition 
for the recovery of ሼݎ௠ሽ via OMP is as follows: 
            ฮΦ෩ ௢௣௧ା Ψ෩௢௣௧ฮଵ,ଵ ൏ 1        (12) 
where, Φ෩ ௢௣௧ା  is the pseudo-inverse of block-diagonal matrix Φ෩ ௢௣௧ ൌ ቎ ܴଵΦ௢௣௧ܴڭெΦ௢௣௧቏ and Ψ෩௢௣௧ ൌ ቎ ܴଵΨ௢௣௧ܴڭெΨ௢௣௧቏. 

Proof: The proof follows a similar structure to that of 
Theorem 3.1 in [8]. Given that is the list of atoms which have 
been selected until step k, let the residual signals, in the kth 
iteration of the algorithm, be ൛ݎ௜௞ൟ௜ where: 
௜௞ݎ    ؠ argminୟԡݎ௜ െ ܽԡଶ such that ܽ א :ሼ߶ఒ݊ܽ݌ݏ ߣ א Λఒሽ 
By construction therefore, ݎ௞ ൌ ሾሺݎଵ௞ሻ், … , ሺݎெ௞ ሻ்ሿ் is in the 
column space of Φ෩ ௢௣௧: ݎ௞ ൌ ൫Φ෩ ௢௣௧ା ൯כΦ෩ ௢௣௧כ  .௞ݎ
We further observe that a sufficient condition for the OMP to 
choose another optimum atom is: 

௞ሻݎሺߩ                             ൌ ฮஏ෩ ೚೛೟כ ௥ೖฮಮቛ஍෩ ೚೛೟כ ௥ೖቛಮ ൏ 1         (13) 

since Φ෩ ௢௣௧כ ௞ lists all the inner products of the atoms in Φ෩ݎ ௢௣௧ 
with ݎ௞ (and likewise for Ψ෩௢௣௧כ  .(௞ݎ
But since: ฮஏ෩ ೚೛೟כ ௥ೖฮಮቛ஍෩ ೚೛೟כ ௥ೖቛಮ ൌ ቛஏ෩ ೚೛೟כ ൫஍෩ ೚೛೟శ ൯כ஍෩ ೚೛೟כ ௥ೖቛಮቛ஍෩ ೚೛೟כ ௥ೖቛಮ    

                 ൏  ฮΦ෩ ௢௣௧ା Ψ෩௢௣௧ฮஶ,ஶ ൌ ฮΦ෩ ௢௣௧ା Ψ෩௢௣௧ฮଵ,ଵ 
It follows that a sufficient condition for exact recovery of the 
signal is: ฮΦ෩ ௢௣௧ା Ψ෩௢௣௧ฮଵ,ଵ ൏ 1             □ 
 
Given the above lemma, the following theorem can be 
derived [8] which pertains to a general signal not necessarily 
yielding an exact representation with respect to Φ෩ ௢௣௧: 
Theorem 1: Assume that ߤଵሺ݉ሻ ൏ 1/2 (where, ߤଵሺ݉ሻ ൌmaxట ∑ ∑ ,߰ۃ| ܴ௞߶ఒۄ|ெ௞ୀଵ஛אஃ೚೛೟ , such that Λ௢௣௧ indexes the 
atoms in Φ෩ ௢௣௧), then OMP recovers an m-term 
approximation, ݎ௠, of ݎ ൌ ሾݎଵ் , … ,  :ெ்ሿ் which satisfiesݎ

  ԡݎ െ ௠ԡଶݎ ൑ ට1 ൅ ሺΦ෩ܥ ௢௣௧, ݉ሻฮݎ െ  ௢௣௧ฮଶ       (14)ݎ

where, ܥሺΦ෩ ௢௣௧, ݉ሻ ൑ ௠൫ଵିఓభሺ௠ሻ൯൫ଵିଶఓభሺ௠ሻ൯మ             □ 

  
It can be seen from (13) that the orbit that is chosen by the 
OMP algorithm corresponds to the atom ߶ for which: 
            ߶ ൌ argmaxఝ ∑ ,௜ܴ߮ۃ| ெ௜ୀଵ|ۄ௜ݎ               (15) 
which is exactly the same criterion used by the GSAAR 
algorithm (shown in step 3 of the GSAAR algorithm 
description above). The above analysis applies under the 
assumption that the coefficients of the atoms selected are 
obtained via an orthogonal projection to the sub-space 
spanned by the selected atoms. This of course can be easily 
incorporated into Step 4 of GSAAR algorithm described in 
the previous section. In this paper however we have taken a 
simpler approach of just choosing the coefficient that has the 
minimum normalized amplitude among all the sensor 
projections of the chosen orbit. The rationale for such a 
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simple low-complexity approach is as follows. We say that 
two spatial atoms collide at ߠ௠ if they have identical 
quantized projection locations with respect to ߠ௠ (this 
definition suffices for point scatterers in this paper—but in 
general will have to be modified also incorporate the scales of 
the atoms). The ability to resolve N spatial atoms therefore 
hinges on the ability to find sensing angles that separate the 
pairs of atoms i.e. where collision does not occur. Under the 
assumption that the source image I is infected with zero-mean 
additive Gaussian noise, we can easily show that the optimal 
strategy is to average the measurements obtained from the 
non-collisional projections. However since we do not a priori 
know the collisional structure of the interactions, we 
conservatively choose the measurement with the minimum 
value since every projective radon measurement implicitly 
involves averaging the random fluctuations. This is therefore 
the strategy that we adopt in this paper. 
 We further point out that another important factor affecting 
the performance of the GSAAR algorithm is quantization 
resolution of the radon measurements made for any given 
sensing angle—i.e. correspondingly the structure of the 
dictionary Φ෩ ൌ ൣܴఏభሼΦሽ, … , ܴఏಾሼΦሽ൧ thus induced. This is 
partially captured by the coherence condition, ߤଵሺ݉ሻ ൏ 1/2, 
in Theorem 1 which states that optimality of the algorithm 
can no longer be guaranteed if the mutual coherence between 
the atoms of the dictionary Φ෩  is too high (i.e. if it exceeds 
1/2). This mutual coherence condition therefore depends both 
on the properties of the original image dictionary Φ together 
with its interaction with the radon transform. 
 The advantage of GSAAR over a straightforward 
implementation of OMP is that it has lower computational 
complexity than the latter because of the fact that the OMP 
iteratively sifts through all the atoms in the spatial Gabor 
dictionary until the optimal ones are found due to which all 
spatial locations must be considered during each iteration of 
the algorithm. This renders the complexity of OMP for this 
case to be of the order ܱሺܵሻ where S is the number of spatial 
locations in the source image (and assuming a constant cost 
of processing for each orbit considered). The GSAAR on the 
other hand circumvents considering every spatial location by 
effectively reducing the number of orbits to ܱሺܭ√ܵሻ, such 
that ܭ ൌ ܱሺܯሻ (where, M is the number of sensors). 

 
III. SIMULATION RESULTS 

Consider N point scatterers uniformly distributed in space 
corrupted by additional Gaussian noise of unit variance and 
scale factor η. Figure 1 shows a sample distribution of this 
(without the amplitude information). In the simulations below, 
this source is sensed by M=8 sensors that are uniformly 
distributed in a circular geometry. The amplitudes of the point 
scatterers are uniformly distributed in the range [ε, 1] where ߝ ൐ 0 

As explained in Section 2, as a consequence of modeling 
the spatial image by Gabor atoms, the actual measurements 
performed by each sensor is a composition of 1-D Gabor 
functions. Since we are dealing with simple image structures 

(point scatterers), we construct the Gabor dictionary with scale ߪ ൌ 0.5 and with 16 frequency bands whose centers are 
dyadically placed in a manner similar to the construction of 
Gabor wavelets in [6]. 

Table 1 shows the ratio of MSE (mean-square error) in the 
reconstruction of the source image when GSAAR algorithm as 
compared to inverse Radon algorithm for varying noise levels. 
Although we find in all cases that GSAAR outperforms the 
inverse Radon approach, such a comparison is not entirely fair 
because it leaves open the possibility that the location of the 
point scatterers could be inferred from the Fourier 
reconstructed image by simply choosing the N maximum 
locations. 

Thus in Figure 2 we show, for varying noise levels, the 
percentage error in detecting the location of the N scatterers in 
space when using the inverse Radon, GSAAR and 
Compressive Sensing [7] approaches. Figure 3 shows the 
percentage error for varying number of scatterers but for a 
fixed noise level. In determining the percentage error for all 
cases, a non-conflicting spatial location inferred by any 
algorithm within a radius of ten pixels from a source point 
scatterer is considered to be a correct inference. In all cases we 
see that the GSAAR algorithm outperforms both Fourier and 
Compressive Sensing based approaches when there is even 
moderate amount of noise present in the system. In these 
simulations in order to ensure that a maximum operation can 
in principle retrieve the locations of the N point scatterers in 
space, ε was chosen to be greater than the noise level η. 
However similar results were obtained for all ߝ ൐ 0. 

These results point to the advantages of imaging in non-
Fourier bases and demonstrate how knowledge of the sparse 
structure of the source images with respect to known 
dictionaries can potentially be leveraged to obtain superior 
imaging capabilities over conventional methods of radar 
imaging. 

 

IV. DISCUSSION 
Traditional methods of radar image processing first form 

the image using Fourier backscattering approach and then 
analyze the same with respect to various wavelet and 
overcomplete dictionaries. In this paper we directly form the 
image from the radon measurements by analyzing the orbital 
structure of the image. To this end we introduced the GSAAR 
algorithm wherein the explicit goal is to sparsify the number 
of orbits that comprise the radon measurements. The special 
properties of the radon projection of Gabors was utilized to 
estimate the parameters of the spatial Gabor atoms. The results 
demonstrate superior performance of the GSAAR algorithm 
for point scatterer images. The immediate problem arising 
from this work is that of extending the GSAAR algorithm to 
handle more complex image structure. Firstly the choice of 
Gabor dictionary is still likely to be useful although other 
candidates such as local-cosine bases can also be considered. 
A related problem is the systematic determination of the 
multi-scale structure of the source image via the clustering of 
nearby spatial atoms. These and related issues are the subject 
of our on-going research efforts. 
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Noise Levels 0 0.05 0.1 0.15 0.2
MSE_GSAAR/MSE_Fourier 0.2608 0.4033 0.4070 0.4106 0.4116

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Shows the ratio of the Mean Square Error (MSE) between the GSAAR algorithm and Fourier backprojection methods for 
varying noise levels and N=25 scatterers. GSAAR consistently gives best MSE performance 

Figure 1 

Figure 2 Figure 3 

Figure 1: Show a sample distribution of point scatterers 
Figure 2: Shows the performance of GSAAR (red; o-), Fourier based (blue; x-) and Compressive sensing based approaches (black; +-) for  
               N=25 scatterers and for varying noise levels 
Figure 3: Shows the performance of GSAAR (red; o-), Fourier based (blue; x-) and Compressive sensing based approaches (black; +-) for  
               η=0.1 noise-level and for and for varying number of scatterers 
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